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NONTECHNICAL SUMMARY 

The following model Is considered: A machine Is inspected at the 

beginning of discrete time periods and Its  operating state (condition) 

is determined. After each inspection a decision upon' whether or not 

to replace the machine at the end of the period must be made.  If the 

machine is replaced a new machine must be purchased. It is assumed 

that it takes one period to purchase and install a new machine — during 

this period the process is said to be in state 0. If the machine is 

in operating state (condltlo'i) 1 and a decision not to replace is 

made then there are known transition probabilities F   such that the 

operating state of the machine at time t+l will be j with probability 

P. .. Thus, for instance, F   is the probability that a machine In 

operating state i will fail. If the machtne does fail during a period 

then it is removed at the end of the period and a new nachine must then 

be purchased. As before this corresponds to being in state 0. 

It is supposed that each time a machine ie classified as being in 

operating state 1 an operating cost C(i) is incurred. Also when- 

ever the process is in state 0 a cost C(0) is incurred. This may 

include both the costs due to buying, delivering, and installing a new 

machine and a^lso a cost due to the fact that no machine is in use for 

one period. 

A policy is any rule for deciding when to replace the machine and 

when to leave it alone. It is shown that if  (l) C(i) - the operating 

cost associated with state i - is increasing in 1 (for 1 > 0) and 

if (2) the transition into any higher block of states (K,K+1, ...j is 

more likely for a higher numbered state then for a lower numbered state, 
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then the policy which leads to the smallest (long-run) average cost 

has a very simple form. Its form Is that for some Integer J It 

replaces when In operating state 1 If and only If 1 > J. 
■ • 

Methods for finding the optimal policy (or equlvalently the critical 

value    j)    are discussed and a numerical example Is given. 

Often in practice there is an additional cost incurred whenever 

a non-planned replacement — i.e.,  a replacement caused by a failure - 

occurs.     It is shown that even in this case the optimal policy has the 

same form as before. 
— 

In the last section of this paper the case where more than one 

machine may be purchased at a given time is considered. Thus when a 

machine falls many machines may be purchased. One could then be put "* 

in use and the others held as reserves. This might be desirable for 

(l) it might be less expensive to buy the units in quantity, (2) it 

might cat down on delivery and installation costs, and (3) It woulO 

cut down the number of periods during which no machine Is In use. It 

Is then shown that a multl-dlmenslonal generalization of the optimal 

policy for the original (no reserves) problem is optimal for this 

problem. 
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A MARKOVIAN REPLACEMENT MODEL WITH A 

GENERALIZATION TO INCLUDE STOCKING 

by 

Sheldon M. Ross 

1. Model and Summary of Results. 

This paper is concerned with the following countable state Markovian 

Replacement Model: A unit (piece of equipment, system, etc.) is observed 

at the beginning of discrete time periods t = 0,1,2,... and classified 

as being in one  of a countable number of states labeled by the non- 

negative integers. After observing the state of the unit the observer 

must choose one of two possible actions: Action 1 is to leave the unit 

in service; Action 0 is to remove the unit from service at the end of 

the period. It is assumed that a unit in state i will fall during 

the period before the next observation with probability F.Q. If a 

unit falls it is removed at the end of the period. Whenever a unit is 

removed from service (either by action 0 or by action 1 and a subsequent 

failure) a new unit must be purchased. This corresponds to being in 

state 0. Thus only one action is possible when in state 0 and that is 

to purchase a new unit. It is assumed that it takes one time period 

to purchase and install a new unit. 

If action 1 is chosen at time t then there are known tran- 

sition probabilities P . 1=1,2,... J=0,1,... such that 

P{Xt+1 = j|Xt = i, At = ll -P^   where 

X. = state.of the unit in use at time t, and 

A = action chosen at time t. 
t 
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Of course, if action 0 is chosen at time t then X , = 0 - 
t+1 

I.e., 
P(Xt+1 = 0|Xt = 1, At = o) = 1  for 1=1,2,... 

Also, when a new unit is purchased there is a kr. vn probability 

distribution {P, ]" . over its initial state - i.e., PlX,. .«llX^-Oj-P,. 
1 1«»0 '    t+1 ' t    1 

Thus, for instance, PQ may be interpreted as the probability that a 

new machine will be inoperative. 

We shall call X.  the state of the process at time t. Each 

time the process is in state 1 an expected cost C(i) is incurred. 

Thus, for 1 > 0, C(i) may be interpreted as the expected operating 

cost Incurred during one period by a unit which is in state 1 at the 

beginning of the period. C(0) Includes the cost of buying and instal- 

ling a new unit; it may also Include a cost due to the fact that no 

unit Is In use for that period. 

A policy is any rule for choosing actions. In sections 5 and k 

of this paper under suitable conditions on the costs and transition 

probabilities (given in section 2), the structure of an optimal policy 

with respect to (l) the dlscounted-cost and (2) the average-cost criterion 

is determined. Theorems 3*2 and k.2  of these sections generalize results 

given in [2]. This generalization is in two directions. Firstly, we 

allow for a countable number of states (versus a finite number in [2]) 

and secondly we allow for a somewhat more general class of transition 

probabilities. The other theorems in sections 5 and h  are new and 

further characterize the structure of the optimal policy. These theorems 

show that the decision upon whether or not to replace at time t may 

sometimes be determined solely by the conditional expected cost incurred 

at time t+1 given that you don't replace and a failure doesn't occur. 
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For example,  It Is shown that, under pure deterioration, the optimal 

average-cost policy replaces only when this conditional expected cost 

is larger than the optimal average cost per unit time. 

In section 5 methods for finding the optimal policy by exploiting 

its known structure are suggested. A numerical example Is given. 

In section 6 it Is shown how the previous results may be extended 

to the case where there is a penalty cost incurred whenever a non- 

planned replacement (i.e., a replacement caused by a failure) occurs. 

In section 7 the case where more than one unit may be purchased 

a.* u.  el»eii ulm:  io cuiiüxdtred ^.»1 1L is oliOwn that optimal policies 

exist and are analogous In structure to those of sections 5 and k. 

This is a Joint stocking and replacement model and the results generalize 

those given in [J]. 



2. Conditions and Preliminary Lemma 

We Impose the following conditions on the costs and transition 

probabilities: 

Condition 1: {C(i))., is a non-decreasing bounded sequence 

00 

Condition 2:  (^fO-i-i  ^s a non" de creasing sequence 

00 

Condition 3: For each k = 1,2,...    the function r. (i) = l/l-P4A 2 P., 
K        10J=k ij 

is a non-decreasing function of i for i = 1,2,... . 

(where o/O is taken to be «»). 

Thus Conditions 1 and 2 say that the operating cost and failure 

probability are both non-decreasing functions of the state. Condition 3 

says that the conditional probability of a transition into any block of 

states {k,k +1;...), given that action 1 is chosen and a failure does 

not occur, is a non-decreasing function of the present state i (for 1 > 0). 

For notational ease we shall assume throughout that P - < 1 for all 

1. It is quite easy to show that all of the results still hold even if 

this is not the case. 

The following lemma will be needed. Its proof may be found in [2] 

Lemma 3.1: Condition 3 Implies that for every non-decreasing bounded 

sequence (hCj))* . the function k(i) = l/l-P,. Z P. .h(j) is also non- 
J=l 10^0 IJ 

decreasing for 1 = 1,2,... . 

Discounted-Cost Solution 

We are Interested in finding a policy Ra such that 

\|r(l,ß,Rj = min \|f(l,ß,R) for all 1 * 0,1,.,., where 
ß    R 
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y(l,ß,R) *   Z    ß* ER[C(Xt)|X0 - i] 
t-0 

and where 0 < ß ^ 1. Such a policy Is said to be an optimal ß-dlscount 

policy or for short, a ß-optlmal policy. 

Let R. be a ß-optlmal policy and let V0(l) » *(l,ß,Ra) 1 « 0,1... . 

Lemma 3.1; Under Conditions 1, 2, 5 (Vfl(i) - C(l)}* . Is a ^———~— p 1=1 

non-decreasing sequence. 

i 

I 

Proof:    Let   V (l,l) = C(i)    for    1 =■ 0,1,...     and define recursively 

00 

(1)    V (l,n)=mln(C(i) + ßZ P   VA(j,n-l)jC(i)+ßVfl(0,n-l)}    for   1>0 
P J=Q        ij       P P 

and 

V (0,n) = C(0) + ß r P.V (J,n-1) 
ß J=0 J ß 

We first show by induction that    (VQ(l,n) - C(l))* .    is a non-decreasing 

sequence for each   n.    For   n = 1   it follows trivially.   Aasume then that 

{V-(l,n-l) - 0(1))*^    is non-decreasing and let   0 < 1 < k.    There are 

two cases: 

Case 1;    Vß(i,n) = C(l) + ß V (0,n-l),    which implies by (l) that 
00 

(2)     L    P., V (J,n-1) > V (0,n-l),    or equivalently that 
J=0 IJ    ß ß 

(3)    l/l-P10   £    P.. V (J,n-1) >Vft(0,n-l). 

Now    (V (i,n-l)  - C(l)}" 1    nondecreasing Implies that 

(V (^n-l)}^      is nondecreasing, and so by Lemma 2.1 and (j) 

K > 1 > 0    Implies 

■•   i 
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(4) l/l-Pk0 £ Pkj Vß(j,n-l) >Vß(0,n-l), which Implies by 

(1) that 

(5) Vß(k,n) - C(k) = ß Vß(0,n-1) 

- Vß(i,n) - C(i) . 

Case 2; Vfl(i,n) = C(i) + ß L    P.. Vfl(j,n-l) 

and so by (l) we have that 

(6) l/l-Pln E P.. V (J,n-1) <V-(0,n-l), now 

00 

(7) 2 P^V_(j,n-l) = P,v(0,n-1) + (l-P. n)l/l-P.n Z P44Va(j,n-l) 
J=0 ij ß iO ß kO'^'^ i0^0*ij'ß 

+ (VV^io^/ijV-5'11-1) 

and so by Lemma 2.1 and (6) we have that 

+ (I'lIo-P10)VB(0'n-:L) 

00 

=   ^   P   V (J,n-l)  ,    and so 
J=0   kJ ß 

(9)   Vß(i,n) - C(i) < ß   I   P. .Vft(j,n-1) 

but from (l) we also have that 

(10) Vß(i,n)  - C(i) < ß Vß(0,n-1) 

and so from (9), (10) and (l) we get that 

(11) Vß(i,n) - C(i) < Vß(k,n) - C(k) 

and so k > i >0 implies that V (k,n) - C(k) >Vß(i,n) - C(i). 



.'. by induction (Vß(i,n) - C(l)).sl is non-decreasing for all n. 

Now VQ(ijn) 1B the minimum expected discounted costs incurred over 
P 

n-stages given that you start In state 1. Since ß < 1 and costs are 

bounded, it Is easy to see that Vß(l,n) -»Vß(i) as n -►» for each i. 

{Vß(i) - C(!))._,  is non-decreasing. 

Q.E.D. 

Remark:    Since    {C(i)).   ,     is non-decreasing it follows that    {Vfl(i)}.  . 
1=1 p        l=j. 

is non-decreasing. 

Definition:    A policy   B    that replaces (takes action 0)  at time   t   iff 

X   > J    for some    J = 1,2,... <»    is called a control-limit policy.    The 

control-limit policy with    J = »    is the policy ./hich never replaces. 

Theorem 5.2 :    Under Conditions 1,  2,  3 there is a control-limit policy 

which is ß-optimal. 

Proof:     It is well known (see [l])  that    Vß(i)   i = 0,1,2,   ...    satisfies 
00 

V (i)  = min{C(i)  + ß   2    P.. V (j);  C(i) + ß VR(0))     for    1=1,2,.. 
ß J=0    iJ    ß ß 

and any policy which chooses action 1 in state 1 when the first term is 

the minimum and action 0 when the second term is minimum is ß-optimal. 
00 

Let    1    = oo   if     I    ^4 V
B(J) < VB(0)    for all    i > 0,    otherwise 

p j=o    1J    p p 

00 

let    lß = min(i:    Z    P^ Vß(j) > Vß(c)) 

= min{i:l/l-P       L    P     V (j) >V (o)} 
10 j/0    IJ    ß ß 

I 
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.*. by lemma 2.1 i > iQ => l/l-P,„ Z P. 4 Va( j) > Va(0) or equivalently 
- ß     10 ^0 1J ß     ß 

00 

that  L P.. V (J) >Vfl(0) 

. *. the policy which replaces whenever the process is In state i > iß 

and doesn't whenever in state 1 < iQ is ß-optimal. 
p 

Q.E.D. 

Corollary 3-3? The control-limit policy which replaces in state i if 
00 

and only if  £ P,, V (j) > V (o) is ß-optimal. 
J=0 1J P     P 

Proof: Follows from theorem 3.1. 

The next theorem further characterizes the strujture of the optimal policy. 

Theorem 3«^: Under Conditions 1, 2, 3 if 1 is such that 

l/l-P.n E P,.C(J) < (1-ß) V-(0)   (1 >0) ßv 

then there Is a ß-optimal control-limit policy which does not replace when 

the process is in state i.    Also,  if the above inequality is strict then 

any policy which replaces at state i is not ß-optimal. 

Proof:    VR(i) < 0(1)   + ß VQ(0)        for    1 = 1, 2,   .. 

'ßv •'• ^io /^ pij vß(^ 5 i/i-Pi0 ^o Pij c(J) + ß vR(o) 

Now suppose that l/l-P.n ^ P  c(j) < (l-ß) V (o) 
10 J^Q ij    -      P 

•*■ Vl-P.n * P,1Vfl(j)<U0) 10 J^o ij 'ß'- 

1 

1 
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.'.      LP      V (J) < V (0) 

and so the first part of the theorem follows from Corollary 3.3• 

To prove the second part suppose that 

1/l-P        I    P     C(J) < (1-ß) Vfl(0) 

Then,  as above,  this implies that 

^    P41 V (J) <V (0) 

Now let R be any policy which replace at state i 

.'. )|f(i,ß,R) = C(l) + ßi|f(0,ß,R) 

> C(i) + ß vp(o) 

>C(i) + ß L    P  V (J) >V (i) 
J=0 1J p     p 

and so R is not ß-optimal. 

Q. EcD. 

Often we deal with a process in whcih the unit in use can only deteriorate 

in time. This is represented mathematically by the following: 

Definition: If P^ = 0 for all 0 < J < 1 then we call the process a 

pure deterioration process. 

Theorem 3«v ! In a pure deterioration process, under Conditions 1, 2, 3, 

the control-limit policy which replaces at those states i for which 

l/l-P.. 2 P.. C(J) > (1-ß) VR(0) is ß-optimal. 
i0j/o 1J        ß 
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Proof:    Suppose that    l/l-P,0   £    P.. C(j) > (l-ß) Vft(o),    suppose further 
w J^O     J p 

that there is an optimal policy which does not replace at state 1 

00 

.'.    Ve(i) - C(l)  + ß   L    P.. V (J) 

= C(l)  + ß P.. V (0)  + ß   Z    F      C(J) * ß   I    P,.(Vft(j)-C(j)) 

00 

>c(i) + ß P10 vß(o) + ß(i-Pi0)(i-ß)vß(o) + ß  z:   PiJ(vß(j)-c(j)) 

>C(i) + ß P10 vß(o) + ß(i-P10)(i-ß)vß(o) + ß(i-Pi0)(vß(i)-c(i)) 

where the last Inequality follows from Lemma 3.1. 

.'.   (i - ß + ß P10)vß(i) > (i - ß + ß P10)(C(I) + ß Vß(0)) 

or   Vß(i) >C(i)  + ß Vß(0) 

which is a contradiction, and so every optimal policy replaces at  state 1 

and the result follows from Theorem 5.^. 

Q.E.D. 

Thus,  in a pure deterioration process,  the ß-optimal policy replaces at 

time    t    whenever the conditional expected cost at time    t + 1,    given that 

you don't replace and a failure doesn't occur,  is greater than    (l-ß)VQ(o). 
ß 1 

The significance and intuitive content of Theorems 3A and 3.5 become | 

clearer when we consider them in connection with the average-cost criterion. 

k.    Average-Cost Solution 

For the average-cost criterion we are Interested In a policy    R* 

such that    <p(l,R*)  ^ min «p(l,R)    for all    1 = 0,1,2,... 
R 

n 
where <p(i,R) =    lim    Z   ER[C(Xt)|xo = ij/n . 

n -»00 t=0 

10 



Such a policy B*,    If It exists, is said to be optimal. 

Wc- shall need to assume the following: 

Condition kt    a « mln{P0,P10] > 0. 

In order to prove the analogues of Theorem 3.2, 3.4, and 3.5 we define 

the following process. Consider a new process (the prime process) with 

identical state and action spaces, with the same cost structure, but 

with transition probabilities now given by 

■c 

rr^s for J ^ 0 

P'     =   ( for all    J  = 0,1,..;   1 > 0 
J ^0-° 

rra fOT J= 0 

pi= < 
rra for J ^0 

p
o-a 

S   for    J  = 0 

We shall make use of the following result given by Ross (see [5]): 

The optimal    1-0!    discount rule for the prime process is also an optimal 

policy (in the average-cost sense) for the original process; and 

g = Ct V'     (O)    where    V'-Jo)    is the optimal dlscounted-costs for the 

prime process and    g.    is the optimal average-cost for the original 

process. - i.e., 

V'     (0)  = min *• (0,1-0,^) 

g = min Cp(i,R)    for all    1 = 0,1,... 
R 

The following lemma is needed and its proof is  immediate. 

11 
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Lemma h.2.:    If Conditions 1, 2, 3 hold for the original process then they 

hold for the prime process. 

The following analogue of Theorem 3.2 is thus immediate. 
o 

Theorem ^.2;    Under Conditions 1, 2,  5, k there is a control-limit policy 

which is optimal in the average-cost sense. 

Also noting that   l/l-P»      ^    P'    C(j) = l/l-P,n   ^    P., C(j) 

and    (l -  (l-a))V!    (0) = a V'     (0) = g   we get the following analogues 

of Theorems   3,lv and 3.5. 

Theorem k-3:    Under Conditions 1, 2,3,1*    if    i    is such that 

then there is an average-cost optimal control-limit policy 

which does not replace at state 1.    Also if   ^ > 0   and 

the Inequality is strict ther. any policy which replaces 

whenever In state    1    Is not optimale 

Theorem h. k  ■   Under Conditions 1, 2,  3, ^ if   ?iA = 0    for all   0 < J < i 

i ■ 1,2,..    (pure deterioration) then the control-limit policy which 

replaces at state i if and only if 

l/l-P..    E    P.. C(J) >g 

is optimal in the average-cost sense» 

Thus Theorem k .3 may be interpreted as saying that if the conditional 

expected cost for the next stage, given that we don't replace and a 

failure doesn't occur, is no larger than the optimal average cost then 

12 
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ve should not replace.    Theorem 4.^   says that, under pure deterioration, 

this Is the only time ve should not replace. 

5.    Computation of Optimal Policy 

We have  shown that under Conditions 1, 2, 3, k the optimal (discount 

or average-cost) policy exists and has a simple structure.    In this sec- 

tion we discuss possible methods for calculating the optimal policy. 

We have shown In section k that any method of solution for the 

discounted-cost problem is also a method for the average-cost problem. 

This is so because the average cost problem can be converted Into a 

discounted-cost problem by defining the prime transition probabilities 

JJL 

?•    =  < 
1J       N 

a 

Pio-a 

1 - a 

J ^0 

J = 0 

± 
and 

pw 
l-a 

J ^0 

J  = 0 

where   a = min{P0,P10}. 

The optimal    l-a   discount policy for the prime process is the optimal 

average-cost policy for the original process. 

Similarly,  any method of solution for the average-cost problem is 

also a method for the discounted-cost problem.    We show this by defining 

a new proces (the star process) with identical state, action,  and cost 

spaces but with transition probabilities now given by 

6 P 
1J 

J  ^0 ß P. J ^ 0 
P*    = ^ and        P* = 

13      ' 1 - ß + ß P10      J = 0 J      I 1 - ß + ß P0       J = 0 

I i 

I 
13 
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Then It Is easy to see that Conditions 1, 2, 3, k are satisfied In the 

star process and It again follows from Ross' result (see [5]) '  that 

^(OjR) = (l-ß)|(0,ß,R)    for any (stationary deterministic) policy   R. 

Thus the optimal average-cost policy for the star process is a 

P-optimal discount policy for the original process if this process starts 

in sv'te 0.    However, it is easy to see that this policy will, in most 

cases, be ß-optimal Independent of the initial state.    This is so, for 

example, if all states communlcat';    (P   > 0   for all    1    is sufficient). 

Thus any general method for solving the discount-cost problem may be 

regarded as a general method for solving the average-cost problem and 

vice versa (assuming, of course. Conditions 1, 2, 3, k). 

We shall now discuss possible approaches for determining the optimal 

policy. The first two will be discussed in the discounted-cost framework 

and the last in the average-cost framework. 

I 
I 
! 

1 
1 
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Method 1:    Policy-improvement Method (ß-dlscount) 

We initially choose a policy   R   and calculate    >|f(l,ß,R)    for each 

1 «s 0,1..   .    We then "improve"   R   by forming a new policy   R   which 

which takes action 1 at state 1 if 

1 

2 P.. t(j;ß*R) < t(0,ß,R) and action 0 if 
J=0  J 

E P.. t(j,ß/R) >V'(0,ß,R) 
J=0  J 

Then it can be shown that \|f(i,ß,R) < i|f(i,ß,R) for all 1 = 0,1,.. 

We then improve R, etc. When no further improvement can be made 

we have the optimal policy. 

Ik 
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To take into account the structure of the optimal policy it Is sug- 

geBted that the Initial   R   be chosen to be a control-limit policy. 

However, though one would hope that the Improved policies would also 

be control-limit policies, this 1B uot necessarily the case. 

Method 2:    Successive Approximations (ß-discount) 

Let   B(l) - space of all bounded functions on the non-negative 

Integers. 

Define the operator   T: B(l) ->B(l)   by 

(TU)(i) = C(l) + ß mln(U(0),   Z    P.. U(j))        1 >0 
J=0    1J 

00 

(TU)(0) = C(0) + ß   £    P   U(j) 
J=0    J 

Then   VQ = {VQ(l)}.   .    Is the unique function such that 
P p        1=0 

TVQ = Vß; also    lim Tu = Vß    for any   U    (under the supremum norm). 

Thus    V     may be obtained by successively applying the operator   T 

to any Initial vector    U.    The optimal policy may then be gotten by 

applying Corollary 3.5« 

In order to take advantage of the known structure of   Vfi    (Lemma 3.3 ) 

It is suggested that the initial U-vector has the property that 

(l)    (U(l)).  ,    is a non-decreasing sequence 

00 

(11)    U(0)  = C(0)   + ß    Z    P    U(J) 
j=0    J 

It is easy to check that    Tu    also has property (l). 

Method 3:    Analytic Method (average-cost) 

We assume that the process starts in state 0 and let    T   = time at 

which the process returns to  state 0 

15 
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i.e. T = mln{t:t > 0, Xt = 0) 

Then it 1B well known that for any (stationary) policy R 

<?(0,R) - 

iji c(xt)|x0.o] 
ut"0 J 

V 
when   E_T   is finite hy Condition k. 

Let   R. = control-limit policy which replaces whenever In states 

1, 1 + 1, ■ • •      t 

E. 

Then   g = mln q>(R) «       min 
R 1=1,2,..«» 

lt^o(xt)|x0=o] 
Ep T 

and it is sometimes analytically possible to determine the above 

minimum and the minimal value of 1. One possible approach, which 

is sometime applicable, is to treat ^(R.) as a continuous function 

of 1 and try to minimize It by using differential calculus. 

Example. 5.1: Consider a process for which a unit in state 1, If not 

replaced, either remains In state 1 or falls. Also suppose that the 

failure probability is Independent of the state and also equals the 

probability that a new unit Is defective. 

.'. P^ = 1 - a   pi0 = a  1 = 1,2... 

va 

Then ^(Rj = 

1-1 oo 
C(0) + l/a L   P C(J) + Z P C(J) 
 J=l J J=l J 

1-1       «o 
1 + l/a £ P, + £ P, 

J=l J  J=l ^ 

16 
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T Now suppose    C(J)  = If(l-(l/2)J)        J = 1,2,... 

-      Pj = (l-a)(l/2)0       J = 1,2,... 

•    ^) _ C(0)+Ni-a/a[l-(l/2)1-1-l/3^l/3(lA)1-1]+N(l-a)[(l/2)1-1-(l/3)(lA)1-1] 
1 1 + l-a/ali-il/2)1'1] + (l-^d^)1"1 

i 
To find the value of i which minimizes the above we differentiate,  set 

equal to zero, and solve for 1. 

For   N = 100,    C(o) = 200,    a =  .1.    The minimum value of 1 lies between 
- 

2 and 3.    Thus it seems reasonable that the optimal policy should be 

either    R0    or   R,. 2 3 

To check we first convert to the discount (prime) problem. 

P^ = 1        i = 1,2,... 

P^ = Pj/l-a = (1/2)1        i = 1,2,... 

ß = 1-a = .9 

then   r(0,ß,R2) = l/a cp(R2)  = 777 

r(l,ß,R2) = 500 

)|f'(i,ß,R2)  = lOOd-d/a)1)  +   .9t,(0,ß,R2) i = 2,3,... 

= 699.6 + 100(l-(l/2)i) 

The improved rule is the one which replaces at  state i if and only if 

r(i,ß,R2)  >t,(0,ß,R2) 

the Improved rule Is    R  . 

\ 
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Now t'(0,ß,R3) 

^'(2,3^5) 

i'd^^J = 

l/a cp(R5) = 770 

= 500 

750 

lood-d/s)1) + .9(770) 

695 + icod-d/a)1) 
i - 5,^ 

.'. the improved rule is again R,. 

.'. R, is the optimal average-cost policy- i.e., the optimal policy 

replaces at states 5,^,5,... - and the optimal average cost = 77. 

Q.E.D. 

Example 5«2: By making use of the "star" process and the idea of method 

5 we can sometimes get a closed-form expression for the expected dis- 

counted costs. Suppose we have (as in example 5-1) 

Pii = 1-a , P10 = a   i = 1,2,.. 

P0 = a 

Let P*1 = ß(l-a) , P*n = 1-ß + aß 

I- = ßPi 

10 

P* = 1-ß + Qß 

then ^(0^^)= l/l-ß ^(0^) 

i-1 

where ^(0)Ri) 

C(0) + l/a* L    P* C(J) + E P* C(J) 
 J=l J .1=1 J 

i-1     00 

1 + l/a*   Z    P* + £ P; 
J=l J  J=i J 

and where or* = 1 - ß + Qß. 

Q.E.D. 

18 
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6.  Extension to Penalty Costs 

One possible extension of the above theory Is to Include a penalty 

cost A which is Incurred whenever the process goes to state 0 without 

the replacement action being chosen - i.e. whenever a r.on-planned replace- 

ment occurs. This cur. be treated by letting the coc; function depend not 

only on the state but also on the .■-.ction chosen. 

Thus let C(i,j) = expected cost Incurred when the process is in state i 

and action J is chosen, 1 > 0, J = 0,1. 

However, the value of C(i,j) depends upon whether we are in the dis- 

count or average-cost case. 

Discount Case; In the discount case 

0(1,1) = 0(1) + ß A P10   1 > 0 

0(1,0) = 0(1) 

This Is so since the expected cost of not replacing when in state i 

includes the operating cost plus an expected penalty cost which is dis- 

counted since it is incurred at the next stage. It can be shown, in 

exactly the same manner as before, that Theorem 3.2 remains true. Sim- 

ilarly Theorems 3.4 and 5'5 can be shown to remain true under the proviso 

that 

l/l P [ E P C(i)  +  A P.J replaces 
10 ^0 1J        10 

l/l-P.n E P4 4 0(j) in the statement of these theorems. 
10 J^O iJ 

Average-cost Oase: In the average-cost case 

0(1,1) = 0(1) + A P10   1 >0 

C(i,0) = 0(1) i > 0 . 

19 
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It can then be shown that Theorem k.2 remains true and that Theorems 4.3 

and k*k remain true under the proviso that l/l-P [ Z    P  C(j) + A P ] 
10    j^0    ij 10 

replaces    l/l-P.n   Z    P      C(j)    in the statement of these theorenis.    This 
10 j^0    ij 

is shown,  as before,  by reduction to the discount case via the prime prob- 

lem.    Theorems  U. 5 and k.k   follow,   for instance,  from the discounted 

results by noticing 

that    C(i,l) = C(i)  + A P 

= C(i) + A((l-a)P^0 + a) 

= C(i) + A'(l-a)P: 
iO 

where    A'  = A 
r(l-a)P^0 + or 

(l-a)P' 
iO 

/    P 
LL 

and    ?lr{ 
l - a 

Pio-a 

k   1 - a 

The results then follow by further noticing that 

J / 0 

J = 0 

l/l-piO[J50 
PiJ C(j)+A,pio^ = Vl-P.o ^o P^ Cd)  + A.Plo/l-Plo 

^■V^ PiJ C(^ + A PiO] 

20 
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7.  Generalization to Include: Stocking of Reserve Units. 

It has been assumed up to now that each time a unit falls or is 

replaced a new unit must he purchased and a cost C(0) Is incurred. 

This cost C(o) includes both the coat  of buying, delivering, and In- 

stalling the new unit and also a cost due to the fact that no machine 

is In use for a period. ^<r.  shall r.ow, however, allow for the possibility 

of purchasing more than one unit and keeoinsf some in reserve. This 

might, be desirable for (l) it might be less expensive to buy the units 

in quantity, (2) it might cut down on delivery and installation costs, 

and (3) it would cut down '.he cos1-, due to idleness (no units in use). 

The state space will consist of states 0 and (n,i) 1=1,2,...n=0,l,...N-l. 

The process will be said to be in state (n,l) when the unit in use 

is in operating state i and there are n units In reserve. State 0 

corresponds to the situation where there are no units in reserve and 

no (operating) unit in use.  If the process is in state (n,l) at time 

t then one of two possible actions must be chosen. Action 1 leaves 

the unit in use alone and action 0 replaces it.  If the unit in use 

is in operating state 1 and action 1 is chosen then the unit will 

fall before the next observation with probability P „. If the unit 

fails, and reserve units are on hand, then the unit will be replaced 

at the end of the period. When the process is in state 0 there are N 

possible actions — a ,...,a — where action a  corresponds to pur- 
1      JN K. 

chasing K new units.  Whenever a new (or reserve) unit is put in use 

then we again assume that there is a probability distribution (-P. J.-, 

over its initial state.  Howe\er, we shall now suppose that there is 

zero probability of a new unit being (initially) inoperative. This 

21 
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condition is not essential but it will simplify notation and it also 

clarifies the above formulation. The transition probabilities will 

thus be as follows: 

P(Xt+1 - (n,j)|Xt - (n,!), At = lj - P^  0 < n < N-l  i,J > 0 

P{Xt+1 - (n-l,j)|Xt = (n,i), At = 1} = p^pj 1 < n < N-l i,J > 0 

P(Xt+l 
=0lXt = (0,1), At = lJ =Pi0     1>0 

P{Xt+] = (n-l,j)|Xt = (n,i), At = 0) = Pj  1 < n < N-l i,J > 0 

P(Xt+1 = 0|Xt = (0,i), At = 0] = 1       i > 0 

P(Xt+1 = (K-l,j)|Xt = 0, At = aK] = Pj   1 < K < N-l, J > 0 

00 00 

where  T P - 1, F P  = 1    1 > 0. 

The costs are as follows: Whenever the process is in state (n,l) an 

expected cost C(n;l) is incurred. C(n,i) includes the expected 

operating cost of a unit In state 1 and the inventory costs involved 

In holding n units in reserve. When the process is in state 0 and 

action aK is chosen then there is a cost C(K) incurred - this In- 

cludes the cost of buying, installing, and delivering K new units; 

It may also include a cost due to no unit being in use for a period. 

We shall now determine the structure of the optimal policy. In 

the ß-discount case the results follow in an almost identical manner as 

In section 5» However for the average-cost case the method of section ^ 

no longer works and a new method of attack is developed. 

22 
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Consider the following condition: 

Condition 1': (c(n,l)} . is a non-decreasing bounded aequence for 

each n = 0,1,...^N-l. 

For any policy R, let t(Z,ß,R) = E ßT;ER[C(Xt,At) |X0-Z] 
t=0 

where Z = 0, (n,i) 1 > 0, n < N-l; and where 

fc(X ) for X / 0 
C(X ,A ) = ^  x       t .Let Vß(Z) = min ^(Z,ß,R). 

[C(K)  for Xt = 0, At = ak        
p     R 

Lemma 7-1: Under Conditions V,2,5    (VQ(n,i) - C(n,i)j" j^ is a non- 

decreasing sequence for each n = 0,1,...,N-1. 

Proof: Same as proof of Lemma J.l. Q.E.D. 

Definition: A policy R is said to be a generalized control-limit 

policy if there exists integers (possibly infinite) 1»,...,1N   and 

an integer K, 1 < K < N, such that R cnooses action 0 when in 

state (n,i) iff 1 > i  and R chooses action a„ whenever in ' - n K 

state 0. 

Theorem 7-2: Under Conditions I',2,3  there is a generalized control- 

limit policy which is ß-optimal. 

Proof: 

Vß(n,i) = min < 

C(n,i) +ß r P  Vp(n,j) +ß P.n r P Vfl(u-l,j) 
J/^O ij ß i0 j=l J ß 

C(n,i) + ß T P V (n-l,j) 
j=l J P 

The argument now follows as presented in theorem 3.2. Q.E.D. 

Thus the ß-optimal policy purchases KQ    units when in state 0, and 

when there are n units in reserve it replaces the unit in use if its 

operating state is larger than some preassigned number 1 -1. 

23 

I -   KMtttaAtVtakdZyiWUAU 

m^mmam 



mm 

For any Z = C, (n,i) i > 0, n < N-l, let 

m 
cp(Z,R) = lim  E E [C(X,,A )|xn = Z] 

m -»» t=0 
R   ^ t  0 

A policy R* is said to be average-cost optimal if 

cp(Z,R*) = min cp(Z,R) for all states Z. 
R 

We shall need the following: 

Condition k';  P10 > 0 

Lemma 7.3; Under Conditions 1',2,3,^', for any (stationary) policy R, 

MZ0(R) < N/P10 for all states Z-0, (n,i) i > 0, n < N-l; 

where M7-(R) denotes the mean recurrence time to go from 

state Z to state 0 when policy R is employed. 

Proof:  Let Y = number of units in reserve at time t. Then since 

P.-, > P,n for all i > 0 it follows that PJY . = n-l|Y^ - nj > Pin iU — iU R t+1       t     — 10 

for any policy R. The lemma follows Immediately.      Q.E.D. 

Theorem l.k:    Under Conditions V ,2,3,k'  there exists bounded numbers 

g, f(n,i) n = 0,1,...,N-l, i > 0 such that 

(i)  {f(n,i) - C(n,i)j"   is non-decreasing for each n=0,l,...,N-1 

00 

(ii) (a) g = min ic(K) + L    P f(K-l,j)J 
l<K<n       J=l J 

(b) g + f(n,i) = C(n,i) + min (  E P f(n,j) + P   E P f(n-l,j) 
j/o iJ      i0 j=l J 

i 
(where f(-l,j) = 0 for all j) | 

E P f(n-l,j) 
J=l J 

2k 
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(ll) (c)  The policy  R*  which when In state (n,l) takes action 

1 when the first term of (b) Is minimum and action 0 other- 

wise, and which when in state 0 selects the action which 

minimizes (a) is average-cost optimal. 

(ill)  (p(Z,R*) = g for all states Z. 

Proof; The proof of (ll) and (ill) follows from Lemma 7.3 and Theorems 

1.1,1.2, and 1.4 of [5].  (l) follows from Lemma 7.1 and the remark 

following the proof of Theorem 1.1 of [3]. Q.E.D. 

Corollary 7.^'  Under Conditions 1',2,^,h'   there is a generalized 

control-limit policy which is average-cost optimal. 

Proof: From (ll) of Theorem 7.4 the policy which replaces when in 

state (n,l)  iff 

00 

1/l-P   E P  f(n,j) >    Z    T    f(n-l,j) 
10 J/O iJ       J=l J 

is average-cost optimal. The result then follows from part (l) of 

Theorem 7.4 and Lemma 2.1.        Q.E.D. 

We now prove the analogues of Theorems 4.5 and 4.4 

Theorem 7«6; Under Conditions 1',2,3,k'   it    (n,i) is such that 

l/l-P.n E P  C(n,<j) < g then there is an average-cost optimal 

generalized control-limit policy which does not replace at state (n,i). 

Proof: From (ll) of  Theorem 7.4 we have that 

00 

g + f(n,j) < C(n,j) + Z   P f(n-l,j) 
J=l 3 

00 

.•.g+ 1/l-P        Z    P      f(n,j) < 1/l-P        I    P.1C(n,j)  +    Z    P f(n-l,j) 
1    j/0    1J " 1U J/O    1J J=l    J 
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.*. 1/1-P.n    S   P., C(nj) < g => 1/1-P.n 2 P..f(n-l,j)<  2 P f(n-l,j) 10 i0wA 1J- 

The Theorem follows from Corollary 7-5 Q.E.D. 

J=l J 

Theorem 7-7.'    Under Conditions l',2,5,4'   if    P..  = 0    for all    0 < J < 1 

(pure deterioration)  then the generalized control-limit policy which 

replaces at state    (n,l)     iff 

l/l-P.-    E    F   .   C^n.j)   •■ g    is average-cos', optimal. 

Proof:     Suppose that    l/l-P. ,.    Z    P      C(;i,j)   > g    and suppose further 
ii 

,U0 i,i 

that 

l/l-P        I    P      f(n,j) <    E    P    f(n-l,j) 

00 

'.  r + f(n,l)  = C(n,i)   -    E    P..  f(n,j)   f P.,,    E    P    f(n-l,j) 
j/c    i-1 iü J=l   J 

= C(n,l)  +    E    P..  C(n,j)  +    E    P    ff(n,j)   - C(n,j)) 

30 

+ P        S    P    f(n-l,j) 
J=l    J 

>C(n,l)   + g(i-P,0)   f (1-Fl0)(f(n,l)   - C(n,l)) 

JO 

+  P        E    ?    f(n-l,j) 
J-l    J 

ex, 

*.  g + f(n,l) > C(n,i)  *    E    F,  f(n-lj) 
.1=1 J 

which is a contradiction by Theorem 7.4 (ll) 

00 

.".   1/1-P10    E   P      f(n,j) >    E    P    fCn-lj) 
J/O    1J J=l    J 

.'.  The result follows from Corollary 7.5 and Theorem 7.6.        Q.E.D. 

Corollary J.Ö',     Under the  conditions of Theorem 7-7 if    C(n,l)  is monotone 

non-decreasing in n for i fixed then there is an optimal 

generalized  control-limit policy  such   t,haf.   i  jd.  >*-',l..  .. 

Proof:     Follows from Theorem 7-7. 
26 
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